Η Μηχανική Μάθηση αποτελεί ίσως τον πιο ραγδαία αναπτυσσόμενο τομέα της Τεχνητής Νοημοσύνης καθώς τα τελευταία χρόνια, ειδικά μετά την έλευση της Βαθιάς Μάθησης, έχει προσφέρει πληθώρα μεθόδων με πολύ καλά έως εντυπωσιακά αποτελέσματα σε όλες σχεδόν τις εφαρμογές που απαιτούν ευφυΐα.
Στο βιβλίο αυτό περιγράφονται με συστηματικό τρόπο οι τρεις βασικοί τύποι μάθησης: η μάθηση με επίβλεψη, η μάθηση χωρίς επίβλεψη και η μάθηση με ενίσχυση. Για κάθε τύπο μάθησης αναλύονται τα σημαντικότερα μοντέλα, όπως τα νευρωνικά δίκτυα, οι μηχανές διανυσμάτων υποστήριξης (SVM), τα πιθανοτικά μοντέλα Bayes, τα γραφικά μοντέλα, τα στοχαστικά μοντέλα όπως το κρυφό μοντέλο Markov (HMM), τα αναδρομικά μοντέλα όπως το LSTM, και πολλά άλλα. Ειδικά για τα νευρωνικά δίκτυα, που αποτελούν ένα πολύ σημαντικό μέρος των μεθόδων μηχανικής μάθησης, παρέχεται συστηματική και αναλυτική παρουσίαση, η οποία ξεκινά από το απλό μοντέλο Perceptron του ενός νευρώνα και φτάνει έως τα πολυπλοκότερα μοντέλα, όπως τα βαθιά νευρωνικά δίκτυα.
Για κάθε μοντέλο δίνεται το αναγκαίο μαθηματικό υπόβαθρο για την κατανόηση της λειτουργίας του, με προαπαιτούμενες μόνο βασικές μαθηματικές γνώσεις θεωρίας πιθανοτήτων και γραμμικής άλγεβρας. Πρόσθετα, δίνεται έμφαση στην αλγοριθμική διάσταση των μοντέλων, καθώς τα περισσότερα από αυτά συνοδεύονται από τον σχετικό ψευδοκώδικα και από παραδείγματα εφαρμογής.
Οι εφαρμογές μοντέλων μηχανικής μάθησης αποτελούν σημαντικό κομμάτι του βιβλίου, δεδομένου ότι συνιστούν βασικό κίνητρο για τη μελέτη και την ανάπτυξη των μοντέλων. Περιγράφονται ποικίλες εφαρμογές, όπως η αναγνώριση προτύπων, η επεξεργασία σήματος και εικόνας, η επεξεργασία λόγου, η συμπίεση πληροφορίας, η ανάπτυξη στρατηγικής σε παιχνίδια, κ.λπ.
Η Μηχανική Μάθηση αποτελεί ίσως τον πιο ραγδαία αναπτυσσόμενο τομέα της Τεχνητής Νοημοσύνης καθώς τα τελευταία χρόνια, ειδικά μετά την έλευση της Βαθιάς Μάθησης, έχει προσφέρει πληθώρα μεθόδων με πολύ καλά έως εντυπωσιακά αποτελέσματα σε όλες σχεδόν τις εφαρμογές που απαιτούν ευφυΐα.
Στο βιβλίο αυτό περιγράφονται με συστηματικό τρόπο οι τρεις βασικοί τύποι μάθησης: η μάθηση με επίβλεψη, η μάθηση χωρίς επίβλεψη και η μάθηση με ενίσχυση. Για κάθε τύπο μάθησης αναλύονται τα σημαντικότερα μοντέλα, όπως τα νευρωνικά δίκτυα, οι μηχανές διανυσμάτων υποστήριξης (SVM), τα πιθανοτικά μοντέλα Bayes, τα γραφικά μοντέλα, τα στοχαστικά μοντέλα όπως το κρυφό μοντέλο Markov (HMM), τα αναδρομικά μοντέλα όπως το LSTM, και πολλά άλλα. Ειδικά για τα νευρωνικά δίκτυα, που αποτελούν ένα πολύ σημαντικό μέρος των μεθόδων μηχανικής μάθησης, παρέχεται συστηματική και αναλυτική παρουσίαση, η οποία ξεκινά από το απλό μοντέλο Perceptron του ενός νευρώνα και φτάνει έως τα πολυπλοκότερα μοντέλα, όπως τα βαθιά νευρωνικά δίκτυα.
Για κάθε μοντέλο δίνεται το αναγκαίο μαθηματικό υπόβαθρο για την κατανόηση της λειτουργίας του, με προαπαιτούμενες μόνο βασικές μαθηματικές γνώσεις θεωρίας πιθανοτήτων και γραμμικής άλγεβρας. Πρόσθετα, δίνεται έμφαση στην αλγοριθμική διάσταση των μοντέλων, καθώς τα περισσότερα από αυτά συνοδεύονται από τον σχετικό ψευδοκώδικα και από παραδείγματα εφαρμογής.
Οι εφαρμογές μοντέλων μηχανικής μάθησης αποτελούν σημαντικό κομμάτι του βιβλίου, δεδομένου ότι συνιστούν βασικό κίνητρο για τη μελέτη και την ανάπτυξη των μοντέλων. Περιγράφονται ποικίλες εφαρμογές, όπως η αναγνώριση προτύπων, η επεξεργασία σήματος και εικόνας, η επεξεργασία λόγου, η συμπίεση πληροφορίας, η ανάπτυξη στρατηγικής σε παιχνίδια, κ.λπ.
ΜΗΧΑΝΙΚΗ ΜΑΘΗΣΗBKS.0112023BKS.0112023ΔΙΑΜΑΝΤΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ, ΜΠΟΤΣΗΣ ΔΗΜΗΤΡΗΣΔΙΑΜΑΝΤΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ, ΜΠΟΤΣΗΣ ΔΗΜΗΤΡΗΣΠΛΗΡΟΦΟΡΙΚΗΚατηγορία: ΠΛΗΡΟΦΟΡΙΚΗ •ΔΙΑΜΑΝΤΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ, ΜΠΟΤΣΗΣ ΔΗΜΗΤΡΗΣ στην κατηγορία ΠΛΗΡΟΦΟΡΙΚΗ ISBN: 978-960-461-995-5 Συγγραφέας: ΔΙΑΜΑΝΤΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ, ΜΠΟΤΣΗΣ ΔΗΜΗΤΡΗΣ Εκδοτικός οίκος: ΚΛΕΙΔΑΡΙΘΜΟΣ Σελίδες: 792 Διαστάσεις: 17Χ24 Ημερομηνία Έκδοσης: Νοέμβριος 2019 Η Μηχανική Μάθηση αποτελεί ίσως τον πιο ραγδαία αναπτυσσόμενο τομέα της Τεχνητής Νοημοσύνης καθώς τα τελευταία χρόνια, ειδικά μετά την έλευση της Βαθιάς Μάθησης, έχει προσφέρει πληθώρα μεθόδων με πολύ καλά έως εντυπωσιακά αποτελέσματα σε όλες σχεδόν τις εφαρμογές που απαιτούν ευφυΐα. Στο βιβλίο αυτό περιγράφονται με συστηματικό τρόπο οι τρεις βασικοί τύποι μάθησης: η μάθηση με επίβλεψη, η μάθηση χωρίς επίβλεψη και η μάθηση με ενίσχυση. Για κάθε τύπο μάθησης αναλύονται τα σημαντικότερα μοντέλα, όπως τα νευρωνικά δίκτυα, οι μηχανές διανυσμάτων υποστήριξης (SVM), τα πιθανοτικά μοντέλα Bayes, τα γραφικά μοντέλα, τα στοχαστικά μοντέλα όπως το κρυφό μοντέλο Markov (HMM), τα αναδρομικά μοντέλα όπως το LSTM, και πολλά άλλα. Ειδικά για τα νευρωνικά δίκτυα, που αποτελούν ένα πολύ σημαντικό μέρος των μεθόδων μηχανικής μάθησης, παρέχεται συστηματική και αναλυτική παρουσίαση, η οποία ξεκινά από το απλό μοντέλο Perceptron του ενός νευρώνα και φτάνει έως τα πολυπλοκότερα μοντέλα, όπως τα βαθιά νευρωνικά δίκτυα. Για κάθε μοντέλο δίνεται το αναγκαίο μαθηματικό υπόβαθρο για την κατανόηση της λειτουργίας του, με προαπαιτούμενες μόνο βασικές μαθηματικές γνώσεις θεωρίας πιθανοτήτων και γραμμικής άλγεβρας. Πρόσθετα, δίνεται έμφαση στην αλγοριθμική διάσταση των μοντέλων, καθώς τα περισσότερα από αυτά συνοδεύονται από τον σχετικό ψευδοκώδικα και από παραδείγματα εφαρμογής. Οι εφαρμογές μοντέλων μηχανικής μάθησης αποτελούν σημαντικό κομμάτι του βιβλίου, δεδομένου ότι συνιστούν βασικό κίνητρο για τη μελέτη και την ανάπτυξη των μοντέλων. Περιγράφονται ποικίλες εφαρμογές, όπως η αναγνώριση προτύπων, η επεξεργασία σήματος και εικόνας, η επεξεργασία λόγου, η συμπίεση πληροφορίας, η ανάπτυξη στρατηγικής σε παιχνίδια, κ.λπ.
ΜΗΧΑΝΙΚΗ ΜΑΘΗΣΗ
Η ιστοσελίδα χρησιμοποιεί cookies για την ευκολία της περιήγησης, την εξατομίκευση περιεχομένου και διαφημίσεων και την ανάλυση της επισκεψιμότητάς μας. Δείτε τους ανανεωμένους όρους χρήσης για την προστασία δεδομένων και τα cookies. ΠληροφορίεςΡυθμίσειςΑπόρριψηΑποδοχή
Αναγκαία-Λειτουργικότητας: Τα αναγκαία cookies είναι ουσιαστικής σημασίας για την ορθή λειτουργία της ιστοσελίδας μας επιτρέποντάς σας να κάνετε περιήγηση και να χρησιμοποιήσετε τις λειτουργίες της. Αυτά τα cookies δεν αναγνωρίζουν την ατομική σας ταυτότητα. Χωρίς αυτά τα cookies, δεν μπορούμε να προσφέρουμε αποτελεσματική λειτουργία της ιστοσελίδας μας.
Επιδόσεων: Τα cookies αυτά συλλέγουν πληροφορίες σχετικά με τον τρόπο που ανώνυμα οι επισκέπτες χρησιμοποιούν την ιστοσελίδα μας, για παράδειγμα, ποιές σελίδες έχουν τις πιο συχνές επισκέψεις.
Διαφήμισης: Αυτά τα cookies χρησιμοποιούνται για την παροχή περιεχομένου, που ταιριάζει περισσότερο στα ενδιαφέροντά σας. Μπορεί να χρησιμοποιηθούν για την αποστολή στοχευμένης διαφήμισης/προσφορών ή την μέτρηση αποτελεσματικότητας μιας διαφημιστικής καμπάνιας. Μπορεί να χρησιμοποιηθούν για να καθορίσουμε ποια ηλεκτρονικά κανάλια marketing είναι πιο αποτελεσματικά.
Αποθήκευση